Research Interests
My research interests span the topics of statistical modeling and analysis for geographically referenced data, Bayesian statistics (theory and methods), statistical computing and related software development.
In case this publication list is not up-to-date, my Google Scholar page likely contains more recent papers.
View Publications by:
Publications and Preprints by Year
2025
- Lu, Y., Zhang, X., Neyestani, S., Li, X., Jing, L., Zhang, L., Habre, R., Zhang, J. Assessing Indoor Versus Outdoor PM2.5 Concentrations During the 2025 Los Angeles Fires Using the PurpleAir Sensor Network. [earth arXiv], 2025
- Liu, S.†, Zhang L., Wang, S. A novel and practical approach to generate all-weather 30-meter land surface temperature data. IGARSS 2025 (3rd place out of 340+ submissions in the student paper competition)
- Liu, S.†, Zhang L., Wang, S. End-to-End Reconstruction of High-Resolution Temperature Data Using Physics-Guided Deep Learning. ICML workshop 2025 [link]
- Zhang L. ProjMC2: Scalable and Stable Posterior Inference for Bayesian Spatial Factor Models with Application to Spatial Transcriptomics. [arXiv preprint], 2025
- Magnusson, M., Torgander, J., Bürkner, P., Zhang, L., Carpenter, B., Vehtari, A. (2025) posteriordb: Testing, Benchmarking and Developing Bayesian Inference Algorithms. AISTATS 2025 oral presentation (Top 2%) [link]
- Guo, F., Chen, X., Howland, S., Niu, Z., Zhang, L., Gauderman, J., McConnell, R., Pavlovic, N., Lurmann, F., Bastain, T., Habre, R., Breton, C. & Farzan, S. (2025) Childhood Exposure to Air Pollution, Body Mass Index Trajectories, and Insulin Resistance Among Young Adults. JAMA Network Open [link]
- Liu, S.†, Wang, S., Zhang L. Resolution Revolution: A Physics-Guided Deep Learning Framework for Spatiotemporal Temperature Reconstruction. [arXiv preprint], 2025
- Liu, S.†, Zhang L., Wang, S. End-to-End Reconstruction of High-Resolution Temperature Data Using Physics-Guided Deep Learning. ICML workshop 2025 [link]
- Liu, S.†, Wang, S., Zhang L. Daily land surface temperature reconstruction in Landsat cross-track areas using deep ensemble learning with uncertainty quantification. [arXiv preprint], 2025
- Li, S., Oliva, P., Zhang, L., Goodrich, J., McConnell, R., Conti, D., Chatzi, L. & Aung, M. (2025). Associations between per-and polyfluoroalkyl substances (PFAS) and county-level cancer incidence between 2016 and 2021 and incident cancer burden attributable to PFAS in drinking water in the United States. Journal of Exposure Science & Environmental Epidemiology [link]
2024
- Pan, S., Zhang, L., Bradley, J., Banerjee, S. Bayesian Inference for Spatial-temporal Non-Gaussian Data Using Predictive Stacking, [arXiv preprint], 2024
- Zhang, L., Finley, A., Nothdurft, A. & Banerjee, S. (2024) Bayesian Modeling of Incompatible Spatial Data: A Case Study Involving Post-Adrian Storm Forest Damage Assessment, International Journal of Applied Earth Observation and Geoinformation [link]
- Sparkes, S.†, Garcia, E. & Zhang, L. (2024). The functional average treatment effect. Journal of Causal Inference [link]
- Liu, S.† & Zhang, L. (2024) Deep Feature Gaussian Processes for Single-Scene Aerosol Optical Depth Reconstruction. IEEE Geoscience and Remote Sensing Letters [link]
2023
- Zhang, L.*, Tang, W.* & Banerjee, S. (2023) Fixed-Domain Asymptotics Under Vecchia's Approximation of Spatial Process Likelihoods. Statistica Sinica [link]
- Zhang, L., Tang, W. & Banerjee, S. Bayesian Geostatistics Using Predictive Stacking. [arXiv preprint], 2023
- Sparkes, S.† & Zhang, L. Properties and Deviations of Random Sums of Densely Dependent Random Variables, [arXiv preprint], 2023
2022
- Zhang, L., Carpenter, B., Gelman, A. & Vehtari, A. (2022) Pathfinder: Parallel quasi-Newton variational inference Journal of Machine Learning Research [link]
- Zhang, L. (2022) Applications of Conjugate Gradient in Bayesian computation. Wiley StatsRef-Statistics Reference Online [link]
2021
- Tang, W.*, Zhang, L.*, & Banerjee, S. (2021) On identifiability and consistency of the nugget in Gaussian spatial process models. Journal of the Royal Statistical Society Series B [link]
- Zhang, L. & Banerjee, S. (2021). Spatial factor modeling: A Bayesian matrix‐normal approach for misaligned data. Biometrics [link]
- Zhang, L., Banerjee, S. & Finley, A. O. (2021). High‐dimensional multivariate geostatistics: A Bayesian matrix‐normal approach. Environmetrics [link]
- Watson, G.L., Xiong, D., Zhang, L., Zoller, J.A., Shamshoian, J., Sundin, P., Bufford, T., Rimoin, A.W., Suchard, M.A. and Ramirez, C.M., (2021). Pandemic velocity: forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model. PLOS Computational Biology [preprint]
2020
- Xiong, D.*, Zhang, L.*, Watson, G.L., Sundin, P., Bufford, T., Zoller, J.A., Shamshoian, J., Suchard, M.A. and Ramirez, C.M., (2020). Pseudo-likelihood based logistic regression for estimating COVID-19 infection and case fatality rates by gender, race, and age in California. Epidemics [link]
2019
- Zhang, L., Datta, A. & Banerjee, S. (2019). Practical Bayesian modeling and inference for massive spatial data sets on modest computing environments. Statistical Analysis and Data Mining: The ASA Data Science Journal [link]
(* co-first author, † students mentored by me)
Research Topics
Methodology Development
Scalable Spatial/Spatiotemporal Data Modeling
- Zhang L. ProjMC2: Scalable and Stable Posterior Inference for Bayesian Spatial Factor Models with Application to Spatial Transcriptomics. [arXiv preprint], 2025
- Zhang, L., Finley, A., Nothdurft, A. & Banerjee, S. (2024) Bayesian Modeling of Incompatible Spatial Data: A Case Study Involving Post-Adrian Storm Forest Damage Assessment, International Journal of Applied Earth Observation and Geoinformation [link]
- Pan, S., Zhang, L., Bradley, J., Banerjee, S. Bayesian Inference for Spatial-temporal Non-Gaussian Data Using Predictive Stacking, [arXiv preprint], 2024
- Zhang, L.*, Tang, W.* & Banerjee, S. (2023) Fixed-Domain Asymptotics Under Vecchia's Approximation of Spatial Process Likelihoods. Statistica Sinica [link]
- Zhang, L., Tang, W. & Banerjee, S. Bayesian Geostatistics Using Predictive Stacking. [arXiv preprint], 2023
- Tang, W.*, Zhang, L.*, & Banerjee, S. (2021) On identifiability and consistency of the nugget in Gaussian spatial process models. Journal of the Royal Statistical Society Series B [link]
- Zhang, L. & Banerjee, S. (2021). Spatial factor modeling: A Bayesian matrix‐normal approach for misaligned data. Biometrics [link]
- Zhang, L., Banerjee, S. & Finley, A. O. (2021). High‐dimensional multivariate geostatistics: A Bayesian matrix‐normal approach. Environmetrics [link]
- Zhang, L., Datta, A. & Banerjee, S. (2019). Practical Bayesian modeling and inference for massive spatial data sets on modest computing environments. Statistical Analysis and Data Mining: The ASA Data Science Journal [link]
Bayesian Methodology
- Magnusson, M., Torgander, J., Bürkner, P., Zhang, L., Carpenter, B., Vehtari, A. (2025) posteriordb: Testing, Benchmarking and Developing Bayesian Inference Algorithms. AISTATS 2025 oral presentation (Top 2%) [link]
- Zhang, L., Carpenter, B., Gelman, A. & Vehtari, A. (2022) Pathfinder: Parallel quasi-Newton variational inference Journal of Machine Learning Research [link]
- Zhang, L. (2022) Applications of Conjugate Gradient in Bayesian computation. Wiley StatsRef-Statistics Reference Online [link]
Others
- Sparkes, S.†, Garcia, E. & Zhang, L. (2024). The functional average treatment effect. Journal of Causal Inference [link]
- Sparkes, S.† & Zhang, L. Properties and Deviations of Random Sums of Densely Dependent Random Variables, [arXiv preprint], 2023
Applications
Environmental Health
- Guo, F., Chen, X., Howland, S., Niu, Z., Zhang, L., Gauderman, J., McConnell, R., Pavlovic, N., Lurmann, F., Bastain, T., Habre, R., Breton, C. & Farzan, S. (2025) Childhood Exposure to Air Pollution, Body Mass Index Trajectories, and Insulin Resistance Among Young Adults. JAMA Network Open [link]
- Li, S., Oliva, P., Zhang, L., Goodrich, J., McConnell, R., Conti, D., Chatzi, L. & Aung, M. (2025). Associations between per-and polyfluoroalkyl substances (PFAS) and county-level cancer incidence between 2016 and 2021 and incident cancer burden attributable to PFAS in drinking water in the United States. Journal of Exposure Science & Environmental Epidemiology [link]
- Lu, Y., Zhang, X., Neyestani, S., Li, X., Jing, L., Zhang, L., Habre, R., Zhang, J. Assessing Indoor Versus Outdoor PM2.5 Concentrations During the 2025 Los Angeles Fires Using the PurpleAir Sensor Network. [earth arXiv], 2025
- Watson, G.L., Xiong, D., Zhang, L., Zoller, J.A., Shamshoian, J., Sundin, P., Bufford, T., Rimoin, A.W., Suchard, M.A. and Ramirez, C.M., (2021). Pandemic velocity: forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model. PLOS Computational Biology [preprint]
- Xiong, D.*, Zhang, L.*, Watson, G.L., Sundin, P., Bufford, T., Zoller, J.A., Shamshoian, J., Suchard, M.A. and Ramirez, C.M., (2020). Pseudo-likelihood based logistic regression for estimating COVID-19 infection and case fatality rates by gender, race, and age in California. Epidemics [link]
Remote Sensing
- Liu, S.†, Zhang L., Wang, S. A novel and practical approach to generate all-weather 30-meter land surface temperature data. IGARSS 2025 (3rd place out of 340+ submissions in the student paper competition)
- Liu, S.†, Zhang L., Wang, S. End-to-End Reconstruction of High-Resolution Temperature Data Using Physics-Guided Deep Learning. ICML workshop 2025 [link]
- Liu, S.†, Wang, S., Zhang L. Resolution Revolution: A Physics-Guided Deep Learning Framework for Spatiotemporal Temperature Reconstruction. [arXiv preprint], 2025
- Liu, S.†, Wang, S., Zhang L. Daily land surface temperature reconstruction in Landsat cross-track areas using deep ensemble learning with uncertainty quantification. [arXiv preprint], 2025
- Liu, S.† & Zhang, L. (2024) Deep Feature Gaussian Processes for Single-Scene Aerosol Optical Depth Reconstruction. IEEE Geoscience and Remote Sensing Letters [link]
(* co-first author, † students mentored by me)
Software & Notes
Software Packages
- JALAJni - A JAVA package providing a java interface for lapack and blas library
- JAMAJniLite - A JAVA package providing a java interface for lapack and blas libraries and using the classes defined by JAMA Package
- phase1PRMD - Implements Bayesian phase I repeated measurement design that accounts for multidimensional toxicity endpoints and longitudinal efficacy measure from multiple treatment cycles and allows individualized dose modification