Research Interests

My research interests span the topics of statistical modeling and analysis for geographically referenced data, Bayesian statistics (theory and methods), statistical computing and related software development.

In case this publication list is not up-to-date, my Google Scholar page likely contains more recent papers.

View Publications by:

Publications and Preprints by Year

2025

  • Zhang, L., Tang, W. & Banerjee, S. (2025+) Bayesian Geostatistics Using Predictive Stacking. Journal of the American Statistical Association (Theory and Methods) (In Press) doi:10.1080/01621459.2025.2566449 [link] [arXiv preprint]
  • [preprint] Lu, Y., Zhang, X., Neyestani, S., Li, X., Jing, L., Zhang, L., Habre, R., Zhang, J. Assessing Indoor Versus Outdoor PM2.5 Concentrations During the 2025 Los Angeles Fires Using the PurpleAir Sensor Network. [earth arXiv], 2025
  • Liu, S.†, Zhang L., Wang, S. A novel and practical approach to generate all-weather 30-meter land surface temperature data. IGARSS 2025 (3rd place out of 340+ submissions in the student paper competition)
  • [preprint] Zhang L. ProjMC2: Scalable and Stable Posterior Inference for Bayesian Spatial Factor Models with Application to Spatial Transcriptomics. [arXiv preprint], 2025
  • Magnusson, M., Torgander, J., Bürkner, P., Zhang, L., Carpenter, B., Vehtari, A. (2025) posteriordb: Testing, Benchmarking and Developing Bayesian Inference Algorithms. Proceedings of The 28th International Conference on Artificial Intelligence and Statistics (oral presentation (Top 2%)). PMLR: 258:1198-1206 [link]
  • Guo, F., Chen, X., Howland, S., Niu, Z., Zhang, L., Gauderman, J., McConnell, R., Pavlovic, N., Lurmann, F., Bastain, T., Habre, R., Breton, C. & Farzan, S. (2025) Childhood Exposure to Air Pollution, Body Mass Index Trajectories, and Insulin Resistance Among Young Adults. JAMA Network Open 8(4), e256431 doi:10.1001/jamanetworkopen.2025.6431 [link]
  • [preprint] Liu, S.†, Wang, S., Zhang L. Resolution Revolution: A Physics-Guided Deep Learning Framework for Spatiotemporal Temperature Reconstruction. [arXiv preprint], 2025
  • Liu, S.†, Zhang L., Wang, S. End-to-End Reconstruction of High-Resolution Temperature Data Using Physics-Guided Deep Learning. ICML workshop 2025 [link]
  • [preprint] Liu, S.†, Wang, S., Zhang L. Daily land surface temperature reconstruction in Landsat cross-track areas using deep ensemble learning with uncertainty quantification. [arXiv preprint], 2025
  • Li, S., Oliva, P., Zhang, L., Goodrich, J., McConnell, R., Conti, D., Chatzi, L. & Aung, M. (2025). Associations between per-and polyfluoroalkyl substances (PFAS) and county-level cancer incidence between 2016 and 2021 and incident cancer burden attributable to PFAS in drinking water in the United States. Journal of Exposure Science & Environmental Epidemiology 35(3), 425–436 doi:10.1038/s41370-024-00742-2 [link]

2024

  • [preprint] Pan, S., Zhang, L., Bradley, J., Banerjee, S. Bayesian Inference for Spatial-temporal Non-Gaussian Data Using Predictive Stacking, [arXiv preprint], 2024
  • Zhang, L., Finley, A., Nothdurft, A. & Banerjee, S. (2024) Bayesian Modeling of Incompatible Spatial Data: A Case Study Involving Post-Adrian Storm Forest Damage Assessment, International Journal of Applied Earth Observation and Geoinformation 135, 104224 doi:10.1016/j.jag.2024.104224 [link]
  • Sparkes, S.†, Garcia, E. & Zhang, L. (2024). The functional average treatment effect. Journal of Causal Inference 12(1) doi:10.1515/jci-2023-0076 [link]
  • Liu, S.† & Zhang, L. (2024) Deep Feature Gaussian Processes for Single-Scene Aerosol Optical Depth Reconstruction. IEEE Geoscience and Remote Sensing Letters 21, 1–5 doi:10.1109/lgrs.2024.3398689 [link]

2023

  • Zhang, L.*, Tang, W.* & Banerjee, S. (2023) Fixed-Domain Asymptotics Under Vecchia's Approximation of Spatial Process Likelihoods. Statistica Sinica doi:10.5705/ss.202021.0428 [link]
  • [preprint] Sparkes, S.† & Zhang, L. Properties and Deviations of Random Sums of Densely Dependent Random Variables, [arXiv preprint], 2023

2022

  • Zhang, L., Carpenter, B., Gelman, A. & Vehtari, A. (2022) Pathfinder: Parallel quasi-Newton variational inference Journal of Machine Learning Research 23(306), 1-49 [link]
  • Zhang, L. (2022) Applications of Conjugate Gradient in Bayesian computation. Wiley StatsRef-Statistics Reference Online 1–7 doi:10.1002/9781118445112.stat08411 [link]

2021

  • Tang, W.*, Zhang, L.*, & Banerjee, S. (2021) On identifiability and consistency of the nugget in Gaussian spatial process models. Journal of the Royal Statistical Society Series B 83(5), 1044–1070 doi:10.1111/rssb.12472 [link]
  • Zhang, L. & Banerjee, S. (2021). Spatial factor modeling: A Bayesian matrix‐normal approach for misaligned data. Biometrics 78(2), 560-573 doi:10.1111/biom.13452 [link]
  • Zhang, L., Banerjee, S. & Finley, A. O. (2021). High‐dimensional multivariate geostatistics: A Bayesian matrix‐normal approach. Environmetrics 32(4), e2675 doi:10.1002/env.2675 [link]
  • Watson, G.L., Xiong, D., Zhang, L., Zoller, J.A., Shamshoian, J., Sundin, P., Bufford, T., Rimoin, A.W., Suchard, M.A. and Ramirez, C.M., (2021). Pandemic velocity: forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model. PLOS Computational Biology 17(3), e1008837 doi:10.1371/journal.pcbi.1008837 [link]

2020

  • Xiong, D.*, Zhang, L.*, Watson, G.L., Sundin, P., Bufford, T., Zoller, J.A., Shamshoian, J., Suchard, M.A. and Ramirez, C.M., (2020). Pseudo-likelihood based logistic regression for estimating COVID-19 infection and case fatality rates by gender, race, and age in California. Epidemics 33, 100418 doi:10.1016/j.epidem.2020.100418 [link]

2019

  • Zhang, L., Datta, A. & Banerjee, S. (2019). Practical Bayesian modeling and inference for massive spatial data sets on modest computing environments. Statistical Analysis and Data Mining: The ASA Data Science Journal 12(3), 197-209 doi:10.1002/sam.11413 [link]

(* co-first author, † students mentored by me)

Research Topics

Methodology Development

Scalable Spatial/Spatiotemporal Data Modeling
  • Zhang, L., Tang, W. & Banerjee, S. (2025+) Bayesian Geostatistics Using Predictive Stacking. Journal of the American Statistical Association (Theory and Methods) (In Press) doi:10.1080/01621459.2025.2566449 [link] [arXiv preprint]
  • [preprint] Zhang L. ProjMC2: Scalable and Stable Posterior Inference for Bayesian Spatial Factor Models with Application to Spatial Transcriptomics. [arXiv preprint], 2025
  • Zhang, L., Finley, A., Nothdurft, A. & Banerjee, S. (2024) Bayesian Modeling of Incompatible Spatial Data: A Case Study Involving Post-Adrian Storm Forest Damage Assessment, International Journal of Applied Earth Observation and Geoinformation 135, 104224 doi:10.1016/j.jag.2024.104224 [link]
  • [preprint] Pan, S., Zhang, L., Bradley, J., Banerjee, S. Bayesian Inference for Spatial-temporal Non-Gaussian Data Using Predictive Stacking, [arXiv preprint], 2024
  • Zhang, L.*, Tang, W.* & Banerjee, S. (2023) Fixed-Domain Asymptotics Under Vecchia's Approximation of Spatial Process Likelihoods. Statistica Sinica doi:10.5705/ss.202021.0428 [link]
  • Tang, W.*, Zhang, L.*, & Banerjee, S. (2021) On identifiability and consistency of the nugget in Gaussian spatial process models. Journal of the Royal Statistical Society Series B 83(5), 1044–1070 doi:10.1111/rssb.12472 [link]
  • Zhang, L. & Banerjee, S. (2021). Spatial factor modeling: A Bayesian matrix‐normal approach for misaligned data. Biometrics 78(2), 560-573 doi:10.1111/biom.13452 [link]
  • Zhang, L., Banerjee, S. & Finley, A. O. (2021). High‐dimensional multivariate geostatistics: A Bayesian matrix‐normal approach. Environmetrics 32(4), e2675 doi:10.1002/env.2675 [link]
  • Zhang, L., Datta, A. & Banerjee, S. (2019). Practical Bayesian modeling and inference for massive spatial data sets on modest computing environments. Statistical Analysis and Data Mining: The ASA Data Science Journal 12(3), 197-209 doi:10.1002/sam.11413 [link]
Bayesian Methodology
  • Magnusson, M., Torgander, J., Bürkner, P., Zhang, L., Carpenter, B., Vehtari, A. (2025) posteriordb: Testing, Benchmarking and Developing Bayesian Inference Algorithms. Proceedings of The 28th International Conference on Artificial Intelligence and Statistics (oral presentation (Top 2%)). PMLR: 258:1198-1206 [link]
  • Zhang, L., Carpenter, B., Gelman, A. & Vehtari, A. (2022) Pathfinder: Parallel quasi-Newton variational inference Journal of Machine Learning Research 23(306), 1-49 [link]
  • Zhang, L. (2022) Applications of Conjugate Gradient in Bayesian computation. Wiley StatsRef-Statistics Reference Online 1–7 doi:10.1002/9781118445112.stat08411 [link]
Others
  • Sparkes, S.†, Garcia, E. & Zhang, L. (2024). The functional average treatment effect. Journal of Causal Inference 12(1) doi:10.1515/jci-2023-0076 [link]
  • [preprint] Sparkes, S.† & Zhang, L. Properties and Deviations of Random Sums of Densely Dependent Random Variables, [arXiv preprint], 2023

Applications

Environmental Health
  • Guo, F., Chen, X., Howland, S., Niu, Z., Zhang, L., Gauderman, J., McConnell, R., Pavlovic, N., Lurmann, F., Bastain, T., Habre, R., Breton, C. & Farzan, S. (2025) Childhood Exposure to Air Pollution, Body Mass Index Trajectories, and Insulin Resistance Among Young Adults. JAMA Network Open [link]
  • Li, S., Oliva, P., Zhang, L., Goodrich, J., McConnell, R., Conti, D., Chatzi, L. & Aung, M. (2025). Associations between per-and polyfluoroalkyl substances (PFAS) and county-level cancer incidence between 2016 and 2021 and incident cancer burden attributable to PFAS in drinking water in the United States. Journal of Exposure Science & Environmental Epidemiology 35(3), 425–436 doi:10.1038/s41370-024-00742-2 [link]
  • [preprint] Lu, Y., Zhang, X., Neyestani, S., Li, X., Jing, L., Zhang, L., Habre, R., Zhang, J. Assessing Indoor Versus Outdoor PM2.5 Concentrations During the 2025 Los Angeles Fires Using the PurpleAir Sensor Network. [earth arXiv], 2025
  • Watson, G.L., Xiong, D., Zhang, L., Zoller, J.A., Shamshoian, J., Sundin, P., Bufford, T., Rimoin, A.W., Suchard, M.A. and Ramirez, C.M., (2021). Pandemic velocity: forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model. PLOS Computational Biology 17(3), e1008837 doi:10.1371/journal.pcbi.1008837 [link]
  • Xiong, D.*, Zhang, L.*, Watson, G.L., Sundin, P., Bufford, T., Zoller, J.A., Shamshoian, J., Suchard, M.A. and Ramirez, C.M., (2020). Pseudo-likelihood based logistic regression for estimating COVID-19 infection and case fatality rates by gender, race, and age in California. Epidemics 33, 100418 doi:10.1016/j.epidem.2020.100418 [link]
Remote Sensing
  • Liu, S.†, Zhang L., Wang, S. A novel and practical approach to generate all-weather 30-meter land surface temperature data. IGARSS 2025 (3rd place out of 340+ submissions in the student paper competition)
  • Liu, S.†, Zhang L., Wang, S. End-to-End Reconstruction of High-Resolution Temperature Data Using Physics-Guided Deep Learning. ICML workshop 2025 [link]
  • [preprint] Liu, S.†, Wang, S., Zhang L. Resolution Revolution: A Physics-Guided Deep Learning Framework for Spatiotemporal Temperature Reconstruction. [arXiv preprint], 2025
  • [preprint] Liu, S.†, Wang, S., Zhang L. Daily land surface temperature reconstruction in Landsat cross-track areas using deep ensemble learning with uncertainty quantification. [arXiv preprint], 2025
  • Liu, S.† & Zhang, L. (2024) Deep Feature Gaussian Processes for Single-Scene Aerosol Optical Depth Reconstruction. IEEE Geoscience and Remote Sensing Letters 21, 1–5 doi:10.1109/lgrs.2024.3398689 [link]

(* co-first author, † students mentored by me)

Software & Notes

Software Packages

  • JALAJni - A JAVA package providing a java interface for lapack and blas library
  • JAMAJniLite - A JAVA package providing a java interface for lapack and blas libraries and using the classes defined by JAMA Package
  • phase1PRMD - Implements Bayesian phase I repeated measurement design that accounts for multidimensional toxicity endpoints and longitudinal efficacy measure from multiple treatment cycles and allows individualized dose modification

Notes and Case Studies

  • Stan case study of Nearest neighbor Gaussian process (NNGP) based models [link]
  • A Note on using Kullback-Leibler Divergence to compare the performance of some Nearest Neighbor Gaussian Process (NNGP) based models [link] (HTML)

Publications and Preprints by Authorship

First or Joint First Author

  • Zhang, L., Tang, W. & Banerjee, S. (2025+) Bayesian Geostatistics Using Predictive Stacking. Journal of the American Statistical Association (Theory and Methods) (In Press) doi:10.1080/01621459.2025.2566449 [link] [arXiv preprint]
  • [preprint] Zhang L. ProjMC2: Scalable and Stable Posterior Inference for Bayesian Spatial Factor Models with Application to Spatial Transcriptomics. [arXiv preprint], 2025
  • Zhang, L., Finley, A., Nothdurft, A. & Banerjee, S. (2024) Bayesian Modeling of Incompatible Spatial Data: A Case Study Involving Post-Adrian Storm Forest Damage Assessment, International Journal of Applied Earth Observation and Geoinformation 135, 104224 doi:10.1016/j.jag.2024.104224 [link]
  • Zhang, L.*, Tang, W.* & Banerjee, S. (2023) Fixed-Domain Asymptotics Under Vecchia's Approximation of Spatial Process Likelihoods. Statistica Sinica doi:10.5705/ss.202021.0428 [link]
  • Zhang, L., Carpenter, B., Gelman, A. & Vehtari, A. (2022) Pathfinder: Parallel quasi-Newton variational inference Journal of Machine Learning Research 23(306), 1-49 [link]
  • Zhang, L. (2022) Applications of Conjugate Gradient in Bayesian computation. Wiley StatsRef-Statistics Reference Online 1–7 doi:10.1002/9781118445112.stat08411 [link]
  • Tang, W.*, Zhang, L.*, & Banerjee, S. (2021) On identifiability and consistency of the nugget in Gaussian spatial process models. Journal of the Royal Statistical Society Series B 83(5), 1044–1070 doi:10.1111/rssb.12472 [link]
  • Zhang, L. & Banerjee, S. (2021). Spatial factor modeling: A Bayesian matrix‐normal approach for misaligned data. Biometrics 78(2), 560-573 doi:10.1111/biom.13452 [link]
  • Zhang, L., Banerjee, S. & Finley, A. O. (2021). High‐dimensional multivariate geostatistics: A Bayesian matrix‐normal approach. Environmetrics 32(4), e2675 doi:10.1002/env.2675 [link]
  • Xiong, D.*, Zhang, L.*, Watson, G.L., Sundin, P., Bufford, T., Zoller, J.A., Shamshoian, J., Suchard, M.A. and Ramirez, C.M., (2020). Pseudo-likelihood based logistic regression for estimating COVID-19 infection and case fatality rates by gender, race, and age in California. Epidemics 33, 100418 doi:10.1016/j.epidem.2020.100418 [link]
  • Zhang, L., Datta, A. & Banerjee, S. (2019). Practical Bayesian modeling and inference for massive spatial data sets on modest computing environments. Statistical Analysis and Data Mining: The ASA Data Science Journal 12(3), 197-209 doi:10.1002/sam.11413 [link]

Student/Mentee First Author

  • Liu, S.†, Zhang L., Wang, S. A novel and practical approach to generate all-weather 30-meter land surface temperature data. IGARSS 2025 (3rd place out of 340+ submissions in the student paper competition)
  • Liu, S.†, Zhang L., Wang, S. End-to-End Reconstruction of High-Resolution Temperature Data Using Physics-Guided Deep Learning. ICML workshop 2025 [link]
  • [preprint] Liu, S.†, Wang, S., Zhang L. Resolution Revolution: A Physics-Guided Deep Learning Framework for Spatiotemporal Temperature Reconstruction. [arXiv preprint], 2025
  • [preprint] Liu, S.†, Wang, S., Zhang L. Daily land surface temperature reconstruction in Landsat cross-track areas using deep ensemble learning with uncertainty quantification. [arXiv preprint], 2025
  • Sparkes, S.†, Garcia, E. & Zhang, L. (2024). The functional average treatment effect. Journal of Causal Inference 12(1) doi:10.1515/jci-2023-0076 [link]
  • Liu, S.† & Zhang, L. (2024) Deep Feature Gaussian Processes for Single-Scene Aerosol Optical Depth Reconstruction. IEEE Geoscience and Remote Sensing Letters 21, 1–5 doi:10.1109/lgrs.2024.3398689 [link]
  • [preprint] Sparkes, S.† & Zhang, L. Properties and Deviations of Random Sums of Densely Dependent Random Variables, [arXiv preprint], 2023

Other Collaborations

  • Guo, F., Chen, X., Howland, S., Niu, Z., Zhang, L., Gauderman, J., McConnell, R., Pavlovic, N., Lurmann, F., Bastain, T., Habre, R., Breton, C. & Farzan, S. (2025) Childhood Exposure to Air Pollution, Body Mass Index Trajectories, and Insulin Resistance Among Young Adults. JAMA Network Open [link]
  • Magnusson, M., Torgander, J., Bürkner, P., Zhang, L., Carpenter, B., Vehtari, A. (2025) posteriordb: Testing, Benchmarking and Developing Bayesian Inference Algorithms. Proceedings of The 28th International Conference on Artificial Intelligence and Statistics (oral presentation (Top 2%)). PMLR: 258:1198-1206 [link]
  • Li, S., Oliva, P., Zhang, L., Goodrich, J., McConnell, R., Conti, D., Chatzi, L. & Aung, M. (2025). Associations between per-and polyfluoroalkyl substances (PFAS) and county-level cancer incidence between 2016 and 2021 and incident cancer burden attributable to PFAS in drinking water in the United States. Journal of Exposure Science & Environmental Epidemiology 35(3), 425–436 doi:10.1038/s41370-024-00742-2 [link]
  • [preprint] Lu, Y., Zhang, X., Neyestani, S., Li, X., Jing, L., Zhang, L., Habre, R., Zhang, J. Assessing Indoor Versus Outdoor PM2.5 Concentrations During the 2025 Los Angeles Fires Using the PurpleAir Sensor Network. [earth arXiv], 2025
  • [preprint] Pan, S., Zhang, L., Bradley, J., Banerjee, S. Bayesian Inference for Spatial-temporal Non-Gaussian Data Using Predictive Stacking, [arXiv preprint], 2024
  • Watson, G.L., Xiong, D., Zhang, L., Zoller, J.A., Shamshoian, J., Sundin, P., Bufford, T., Rimoin, A.W., Suchard, M.A. and Ramirez, C.M., (2021). Pandemic velocity: forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model. PLOS Computational Biology 17(3), e1008837 doi:10.1371/journal.pcbi.1008837 [link]

(* co-first author, † students mentored by me)