My research interests span the topics of statistical modeling and analysis for geographically referenced data, Bayesian statistics (theory and methods), statistical computing and related software development.

Publications

Guo, F., Chen, X., Howland, S., Niu, Z., Zhang, L., Gauderman, J., McConnell, R., Pavlovic, N., Lurmann, F., Bastain, T., Habre, R., Breton, C. & Farzan, S.. (2025) Childhood Exposure to Air Pollution, Body Mass Index Trajectories, and Insulin Resistance Among Young Adults. JAMA Network Open link

Magnusson, M., Torgander, J., Bürkner, P., Zhang, L., Carpenter, B., Vehtari, A. (2025) posteriordb: Testing, Benchmarking and Developing Bayesian Inference Algorithms. AISTATS 2025 oral presentation (Top 2%). link

Li, S., Oliva, P., Zhang, L., Goodrich, J., McConnell, R., Conti, D., Chatzi, L. & Aung, M. (2025). Associations between per-and polyfluoroalkyl substances (PFAS) and county-level cancer incidence between 2016 and 2021 and incident cancer burden attributable to PFAS in drinking water in the United States. Journal of Exposure Science & Environmental Epidemiology link

Zhang, L., Finley, A., Nothdurft, A. & Banerjee, S. (2024) Bayesian Modeling of Incompatible Spatial Data: A Case Study Involving Post-Adrian Storm Forest Damage Assessment, International Journal of Applied Earth Observation and Geoinformation link

Sparkes, S.†, Garcia, E. & Zhang, L. (2024). The functional average treatment effect. Journal of Causal Inference link

Liu, S.† & Zhang, L. (2024) Deep Feature Gaussian Processes for Single-Scene Aerosol Optical Depth Reconstruction. IEEE Geoscience and Remote Sensing Letters link

Zhang, L.*, Tang, W.* & Banerjee, S. (2023) Fixed-Domain Asymptotics Under Vecchia’s Approximation of Spatial Process Likelihoods. Statistica Sinica link

Zhang, L., Carpenter, B., Gelman, A. & Vehtari, A. (2022) Pathfinder: Parallel quasi-Newton variational inference Journal of Machine Learning Research link

Zhang, L. (2022) Applications of Conjugate Gradient in Bayesian computation. Wiley StatsRef-Statistics Reference Online link

Tang, W.*, Zhang, L.*, & Banerjee, S. (2021) On identifiability and consistency of the nugget in Gaussian spatial process models. Journal of the Royal Statistical Society Series B link

Zhang, L. & Banerjee, S. (2021). Spatial factor modeling: A Bayesian matrix‐normal approach for misaligned data. Biometrics. link

Zhang, L., Banerjee, S. & Finley, A. O. (2021). High‐dimensional multivariate geostatistics: A Bayesian matrix‐normal approach. Environmetrics. link

Watson, G.L., Xiong, D., Zhang, L., Zoller, J.A., Shamshoian, J., Sundin, P., Bufford, T., Rimoin, A.W., Suchard, M.A. and Ramirez, C.M., (2021). Pandemic velocity: forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model. PLOS Computational Biology. prepint

Xiong, D.*, Zhang, L.*, Watson, G.L., Sundin, P., Bufford, T., Zoller, J.A., Shamshoian, J., Suchard, M.A. and Ramirez, C.M., (2020). Pseudo-likelihood based logistic regression for estimating COVID-19 infection and case fatality rates by gender, race, and age in California. Epidemics link

Zhang, L., Datta, A. & Banerjee, S. (2019). Practical Bayesian modeling and inference for massive spatial data sets on modest computing environments. Statistical Analysis and Data Mining: The ASA Data Science Journal link

Preprints

Zhang, L., Tang, W. & Banerjee, S. Bayesian Geostatistics Using Predictive Stacking. arXiv preprint

Sparkes, S.† & Zhang, L.. Properties and Deviations of Random Sums of Densely Dependent Random Variables, arXiv preprint

Pan, S., Zhang, L., Bradley, J., Banerjee, S. Bayesian Inference for Spatial-temporal Non-Gaussian Data Using Predictive Stacking, arXiv preprint

Liu, S.†, Wang, S., Zhang L.. Daily land surface temperature reconstruction in Landsat cross-track areas using deep ensemble learning with uncertainty quantification. arXiv preprint

Liu, S.†, Wang, S., Zhang L.. Uncertainty-Aware Hourly Air Temperature Mapping at 2 km Resolution via Physics-Guided Deep Learning.

(* co-first author, † students mentored by me)

Notes

Stan case study of Nearest neighbor Gaussian process (NNGP) based models link

A Note on using Kullback-Leibler Divergence to compare the performance of some Nearest Neighbor Gaussian Process (NNGP) based models link (HTML)

Packages